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A theorem on the instability of any equilibrium position of a heavy sphere of finite radius in an arbitrary steady potential non- 
uniform flow of an ideal fluid is proved. © 1999 Elsevier Science Ltd. All fights reserved. 

The problem of the stability of the equilibrium position of a heavy body in a given steady non-uniform 
potential flow has been formulated for a small sphere [1] and a small body of arbitrary shape [2]. 
Lagrangians have been constructed and the fact that there are no points of a local minimum of the 
potential energy has been demonstrated. It has also been shown that the Lagrangian for a small sphere 
has no linear terms with respect to the velocity and the conclusion has been drawn that any equilibrium 
position is unstable [1]. 

Below we construct an exact expression for the Lagrangian for a sphere of finite radius which moves 
in a given non-uniform potential flow. The problem of the stability of the equilibrium position of the 
sphere in a non-uniform steady flow in a potential field of mass forces is formulated and solved. The 
same properties of the Lagrangian are proved for a sphere of finite radius as have been established for 
a small sphere [1]. Hence, from the well-known results on the inversion of the Lagrange-Dirichlet 
theorem, it is concluded that the sphere has no stable equilibrium. 

1. T H E  E X A C T  D Y N A M I C A L  P R I N C I P L E  
A N D  T H E  E Q U A T I O N S  O F  M O T I O N  

Suppose we are given an arbitrary potential flow of an ideal incompressible fluid with a velocity field 
which depends on the time t and the coordinates x(x, y, z) 

v0(t,x) = VO0(t,x), V2~90(t,x) = 0 (1.1) 

and the pressure po(t, x). If the mass forces have a potential U, then the pressure and velocity are related 
by the Cauchy-Lagrange integral 

PO + p~"-~"+-~")-pU = f(t) (1.2) 

The motion of a body in a flow with velocity field (I.I) can be described using Hamilton's variational 
principle, the exact formulation of which for this case is given in [3, 4]. 

The real motion of the body between its two given positions is different from the kinematically possible 
motions in the same time interval t e (tb t2) in that, for real motion, the variation of the Hamilton action 
is equal to zero 

t2 
8j'Ldt = 0, L = T O - n  o +A (1.3) 

tl 

where To and Ilo are the kinetic and potential energies of the body and A is the associated Lagrange function. 
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The following exact representation was derived in [3] 

A = --P I (v - v0)  ~ dV - J podv  (1.4) 
2ta v 

where v = VO is the potential velocity field of the fluid perturbed by the body, V is the volume of the 
body and f~ is the region occupied by the fluid. 

If ql, q2 . . . . .  q6 are generalized coordinates of the body, then formulae (1.1)-(1.4) define the Lagrange 
function of time t, generalized coordinates qa and velocities qa (a  = 1, 2 . . . . .  6). The equations of 
motion of the body can be written in the form 

d 3L OL 
- - = 0 ,  a = l , 2  ..... 6 (1.5) 

dt bil, bq~, 

Below we shall call the potential velocity field of general form v0(t, x) a non-uniform flow, and the 
time-independent velocity field v0(x)---a non-uniform steady flow. The coordinate-independent velocity 
field v0(t) will be called uniform flow. 

2. A S M A L L  S P H E R E  IN N O N - U N I F O R M  FLOW. I N S T A B I L I T Y  
OF T H E  E Q U I L I B R I U M  OF A S M A L L  S P H E R E  IN 

A STEADY N O N - U N I F O R M  F L O W  

We can take the Cartesian coordinates of the centre of the sphere x0(x0, Y0, z0) as generalized 
coordinates. For a sphere of sufficiently small radius a with potential U = --gz (the gravity field) the 
functions (1.4) and (1.3) have the following leading terms of the asymptotic expansion 

A --- 1 pVI k 0 - v o (t, x 0) 12 -Vpo (t, x 0 )+ O(a 5 ) 

1 .2 
To = ~M£o,  Ho = gMzo (2.1) 

1 Mi  2 + l p  V Ilk 0 - v0(t, Xo)12 -VPo(t, Xo)- gMzo L 

where M is the mass and V = 4rta3/3 is the volume of the sphere. 
It can be shown that the terms in ~ which are linear with respect to the Lagrange function L can be 

eliminated. For, adding the total derivative 

d 1 _ 1 ~ ° + i  v "~l-~PV#Po(t, Xo)l- ~PV('--~t o o I 
to the right-hand side of the last expression, we obtain 

l ",  ,'=M+½Pv (2.2) L = ~  

Then the equations of motion (1.5) will take the form 

¼ ° M'ii 0 =-VoW(t,  Xo), V 0 = i + j  + k o z  ° 

The Lagrange function (2.2) and equation of motion (2.3) of a small sphere in a uniform flow were 
obtained in a different way, apparently for the first time, in [1]. Equations (2.3) were derived by Kelvin 
for a steady non-uniform flow [5]. The force acting on a fixed small sphere in a non-uniform unsteady 
flow was determined by Zhukovskii [6]. 

In a non-uniform flow a small sphere of mass M moves like a point with mass M' in a force field with 
potential--W. (Below we shall refer to the function--W as the force potential, and the inverse function 
as the potential energy.) The effect of non-uniform flow is to add to the mass of the sphere M an 
associated mass pV/2 and to the potential of external forces the term--3Vpo(t, x0)/2. 
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The problem of the stability of the equilibrium of a small sphere in a steady non-uniform flow was 
posed in [1] and reduced to an investigation of the equilibrium point x = 0 and its stability in accordance 
with the equations of motion (2.3). The equilibrium condition VoW = 0 or Vpo = 2gM'V-1/3 at x = 0 
can also be satisfied by the appropriate choice of the potential of non-uniform flow O0(x). It was noted 
that in steady uniform flow the law of conservation of energy 

±M'i~ + W ( x o )  = E 
2 

holds. In view of the well-known inequality V2p0(x0)~<0, the function W(x0) is subharmonic, i.e. it satisfies 
the inequality 

V2W(xo ) = 3 Wo2P0(X0)~<0 

As we know, this function cannot have a local minimum. This property of the given dynamical system 
[1] is the analogue of Earnshaw's theorem in electrodynamics on the lack of a stable equilibrium position 
of a point charge in an electrostatic field. Since the potential energy is a harmonic function, it has no 
maximum at any point. The instability of systems with a subharmonic force function is discussed in 
Section 5. 

We shall prove that all the properties determining the instability of a small sphere also hold for a 
sphere of finite radius. Thus in Section 3 we shall prove that the Lagrangian of the system for general 
steady non-uniform flow can be represented in the form of the sum L = Le + L0, where L 2 is a positive- 
definite form which is quadratic with respect to the velocities and L0 is the force potential, which is 
independent of the velocities. Then in Section 4 we establish that V2Lo > 0 is a subharmonic force 
potential (Section 5) we deduce a theorem on the instability of any equilibrium position of a sphere of 
finite radius in a steady non-uniform flow. 

3. P R O O F  THAT T H E R E  ARE NO G Y R O S C O P I C  F O R C E S  

We shall show that the linear terms in #,0 in the function A (1.4) can be eliminated not only in the 
case of a small sphere, but also for a sphere of finite radius which moves in a steady non-uniform flow 
with potential ~0(x0). To do so, we shall represent the velocity field in the first integral of (1.4) in the 
form 

v - v o = V(tp -t~) (3.1) 

Both functions tp and ~ are harmonic, tend to zero at infinity and on the boundary of the sphere 
0V(x0) satisfy the conditions 

~)--~ = i o n ,  O~) _ O~o  On O-n'- On ; n = ( x - x ° '  Y-Yo, Z-Zo)/a (3.2) 

where n is the vector of the unit normal to the sphere surface 0V. 
Thus, the functions tp and ~ satisfy the equation and boundary conditions of outer Neumann problems, 

which have unique solutions. The solutions for tp and ~ can be written explicitly in the form 

a 3 
q)(x, x0) = - ~-~-r2 (x0n) (3.3) 

t~(x, x o) = - I a~/r R o~°  (x° + Rn) dR (3.4) 
a o OR 

r2 = (X-Xo) 2 +(y-yo) 2 +(Z-Zo) 2 

R 2 = ( x ' - x 0 )  2 + ( y ' - y 0 )  2 + ( z ' - z o )  2 

The potential 9 of (3.3) defines the well-known flow about a sphere moving in a fluid which is at rest 
at infinity. The potential ~ of (3.4) is the potential of the part of the flow perturbed by the sphere in 
a non-uniform flow with potential ~0 and is found from Weiss's theorem [7, p. 467]. We shall refer to 
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the function ~ as the Weiss potential. We substitute expression (3.1) into (1.4) and use Green's formula, 
noting that the function q0 is linear in the velocity and ff is independent of the velocity ~.  We separate 
out the term A2, which is quadratic, the term A1 which is linear and the term ~ which is independent 
of A0, and obtain 

A=---P J' - J'V°aV=A°+A2 
2 BV(xo) V(xo) 

^0=-½p I a s -  I poeV, A2= pV( 02+Yo2+ ) (3.5) 
aV(xo) V(x o) 

where n is the outward normal to the sphere V. 
We have omitted the term 

A, 2aVSxo,( 93n  q~sn)dS (3.6) 

since it is a total derivative with respect to time 

d (  1 V@ "~ 
A, =~-~[-TP o(Xo,Yo,Zo)) (3.7) 

and makes no contribution to the equation of the sphere motion. 
In fact, by Green's formula, using boundary condition (3.2), we can transform (3.6) to the form 

= p J dS 
aV(xo) o n  

On the boundary 3V(xo) the function ¢p is equal to Pi = -(koAx + YoAY + ZoAZ)/2. The function P1V~ o 
is defined and differentiable inside V and Gauss's theorem can be applied to the last integral. Then, 
using the property of the harmonic function V(P1VO0), we obtain 

V(.o) z OXo 3Zo ) 

From the theorem on differentiating a composite function, the last expression is the same as (3.7), as 
was to be proved. 

Thus, the exact expression of the Lagrangian L can be represented by two terms: the positive-definite 
form L2, which is quadratic in the velocities, and the force function L0, which is independent of the 
body velocities, and these are found using (1.3) and (3.5) 

L = L 2 + L0 

L.2(0,01,02,0,61,62,/%) = p lxo 12 +To (3.8) 

Lo(O, xo)=-gM(zo+lcoso)+lo ~ g'2(X, Xo)dV- .[Po(x)dV (3.9) 
2 f/(xo) V(xo) 

The first integral in Lo is transformed using Green's formula, and the vector ~ = Vff is the velocity with 
Weiss's potential (3.4), which depends on the actual coordinates x and the coordinates of the centre 
of the sphere x0. 

The generalized coordinates are taken as the three coordinates of the centre of the sphere O(xo, Yo, 
z0) and the Euler angles 0, 01, 02, where 0 is the angle between the axis Oz directed vertically upwards 
and the vector I(xc - x0, yc - Y0, zc - z0), and the point C(xc, y~, z~) is the centre of mass of the sphere 
(see Fig. 1). The kinetic energy T O of a solid sphere comprises the kinetic energy of the motion of the 
centre of mass and a the kinetic energy of motion about the centre of mass (K6nig's theorem) 

• • • . 1 " 2 + ( ¢ 0 x l )  2 ) + 1  5, . iocoi¢oi T0(O'OI' 02'0'01'02' x°)= "2 M(x0 z l ( i , j ,~3 - 
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where co = (001, (o2, o)3) is the angular velocity vector and I 0 are the moments of inertia of the solid 
(i,j = 1,2,3).  

We have thus obtained the required representation of the Lagrange function. 

4. P R O O F  OF THE FACT THAT THE F O R C E  
P O T E N T I A L  IS S U B H A R M O N I C  

The Lagrange function (3.8) corresponds to a conservation system with six degrees of freedom. We 
will prove that the force function L2 is subharmonic: V2Lo(xo) I> 0. We need the following three lemmas. 

Lemma 1. We have the following differentiation formulae 

v0 I P(X, Xo)aV= ](V+Vo)~(X, Xo)aV 
fi(x o ) t~(x o ) 

(4.1) 

Vo I F(x, xo)dV= l(V + Vo)F(x, xo)dV (4.2) 
V(x o) V(xo) 

where V(xo) is the interior of a sphere of radius a with centre at the point Xo and f~(x0) is its exterior. 
The functions F and F depend on the variables x(x, y, z), x0(x0, Y0, z0) and are differentiable in the 
respective regions £2(x0), V(xo) and the integrals in (4.1) are assumed to be absolutely convergent. 

The identity (4.1) is proved by finding the derivative. For the increment of the integral corresponding to the 
increment of the argument Aw0, we have 

I ,~(x, Xo+~)dV- I P(~, ,,o)aV= 
fl(xo +~x) fl(xo) 

where ~(N + ~uQ is the region exterior to a sphere with displaced centre at the point ~ + Ax), ~(~)  is the region 
exterior to a sphere with centre at ~ and n is the inward normal to V and the outward normal to ~(~). Using 
Gauss's formula and dividing by the increment of the argument, we obtain the required identity (4.1). The identity 
(4.2) is derived in the same way. 

Lemma 2. For the Weiss potential q~(x, x0) defined by (3.4) and the potential of a non-uniform flow 
D0(x), we have the identities 

(V + Vo)(V + Vo)#(x, Xo) = 0 (4.3) 

We will prove this using Eq. (3.4). Let the arguments x and x0 be given the same small increment 

Fig. 1. 
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Ax. Then the only thing that changes in (3.4) is that Xo becomes x0 + Ax, while the other variables r, n 
and R remain unchanged. The corresponding increment of the function ~ satisfies the equation 

Hence 

a 2 I r  

Ax(V + Vo) ~ = - Ax ~ R ___._Vo~o(X ° + Rn)dR 
a o ~R 

1 az/r i9 V (V+Vo)6=- a ! R~--~ oa, o(xo+Rn)aR 

Applying the operator (V + Vo) twice to this identity, by a similar argument we obtain Eq. (4.3) (using 
the fact that the function q~0(x) is harmonic). 

Lemma 3. The square of the velocity v(x, x0) = Vff with Weiss potential and the pressure p0(x), 
determined from the Cauchy-Lagrange integral (1.2), satisfy the inequalities 

(V + Vo)(V+ Vo)g'2(x, x0)= 

(t = 2  V + V 0 )  + V + V o )  + ( V + V 0 )  I>0 (4.4) 

~Yl --~-z I ) 0 

Proof. Bearing in mind Eq. (4.3) and the consequent identity and making the obvious transformation, we obtain 
the first inequality of (4.4) 

(V + Vo)(V + Vo)~'(x, x o) = V((V + Vo)(V + Vo)~(x, Xo) ) = 0 

3 
(V + V o)(V + V o)~'2 (x) = 2 E ('u k (V + V o )(V + V o)~) k + I (V + V o)~ k 12 ) = 

k=l 

3 
= ~. 21(V+VoYU kl 2 

k=l 

The second inequality of (4.4) is derived in the same way. 

We now prove that the force function L0(xo) is subharmonic. 
We apply the operator V0 twice to the function L0(x0) in (3.9). Using identities (4.1) and (4.2) in 

succession we obtain 

VgLo(xo) = p  I (V+Vo)(V+Vo)  g'2dV- ~ V2po(x) dV (4.5) 
~(x o) V(xo) 

Applying inequalities (4.4) of Lemma 3 to the integrands in (4.5) we obtain the required condition 

V2LoCxo} >I 0 (4.6) 

from which it follows that the function L0(x0) cannot have a local maximum at any point. Hence, using 
well-known results on the inversion of the Lagrange-Dirichlet theorem we obtain a theorem on the 
stability of the equilibrium of a sphere of finite radius a in a non-uniform steady flow (Section 5). 

We can prove a more general statement. The angles 01, 02 may be cyclic coordinates. Then the sphere 
can perform steady motion with constant angular momentum with fixed centre x0. Any such steady 
motion will also be unstable. For, the function To does not depend explicitly on the coordinates Xo. Thus 
by using Routh's method to eliminate the cyclic coordinates, we find that the additional potential energy 
will be independent of x0 and all the results on the lack of a local minimum of the potential energy 
remain valid. 
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5. T H E O R E M S  ON T H E  S T A B I L I T Y  O F  E Q U I L I B R I U M  IN T H E  CA S E 
OF  A S U B H A R M O N I C  F O R C E  P O T E N T I A L  

Suppose that at the origin of  coordinates the system with Lagrangian (3.8) satisfied the equilibrium 
condition 

V0L0(0, x0)=gM+±pV0 j" ~2(x, x0)dV-V0 [ po(x)dV=O (5.1) 
2 fl(xo) V(xo ) 

where the velocity ~(x, x0) with Weiss potential and pressure of non-uniform flowp0(x) can be expressed 
in terms of  the arbitrary function O0(x) using formulae (3.4) and (1.2). The arbitrary function O0(x) 
can be chosen to satisfy condition (5.1). For example, we could choose a family of potentials KO0 with 
axial symmetry with respect to the z axis. Then both integrals in (5.1) will be in the direction of the 
gravitational acceleration g and proportional to K2. Equation (5.1) will be satisfied with the appropriate 
value of the coefficient K. 

The expansion of the force potential in a Maclaurin series at the equilibrium point x = 0 will have 
the form 

L0 = L (2) + L (3) + L (4) + ... (5.2) 

where L (n) is a polynomial of degree n, homogeneous in the coordinates. 
I f L  (2) ~ 0, by virtue of  (4.6) V2L (2) >~ O. In that case the instability of the equilibrium follows from 

Lyapunov's theorem on instability in a first approximation (see [8], for example). This is the most 
common case of the equilibrium of such a system. Note that Earnshaw concluded, on the basis of  this 
result, that a charge is unstable in any electrostatic field. 

In the degenerate case L (2) = 0 series (5.2) can begin with a homogeneous polynomial of higher than 
the second degree 

Lo = L(n) + L (n+l) + . . . ,  n > 2  

and, from subharmonic condition (4.6), L (n) will not have a local maximum at zero. The theorems of 
Chetayev [8] and others [9, pp. 88-90] on the inversion of  the Lagrange-Diriehlet theorem, are used 
to prove that the equilibrium is unstable under special conditions in this degenerate case. The result 
obtained in [10] completely solves the problem of proving the theorem on the instability of equilibrium 
of the given system: "Let  the force function be subharmonic and let its Maclaurin series be non-zero; 
then equilibrium x = 0 is unstable". Instability in the Earnshaw problem in the degenerate case follows 
from this result in [10]. 
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